

Iterative Optimisation with an Innovation CNN

Thesis Proposal Review

Gerard Kennedy

Supervisors: Robert Mahony, Xin Yu, Nick Barnes, Hongdong Li

Overview

- Motivation
- Innovation CNN Introduction
- Technical Talk: Initial Application
 - Object Pose Estimation
 - Formulation
 - Network Architecture
 - Evaluation
 - Design Choices
 - Initial Results
- Future work

Motivation

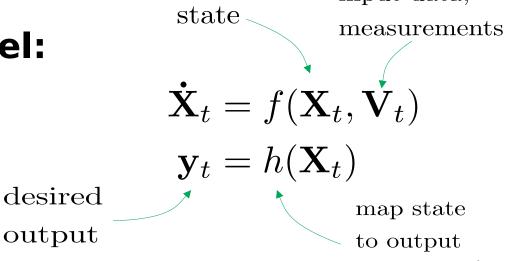
Variables In An Estimation Problem

- **Input:** the measured variables available to the estimation algorithm.
- State: the set of internal variables that summarises all the information in the system.
- Output: the variables that are required to be estimated.

State Estimation

- **State estimator:** an algorithm that enables the extraction of information about features of a system that are not explicitly provided by the data, via estimation of an underlying state representation.

 input data,
- System model:



5/57

Online State Estimation

- Updating the desired information as new data becomes available
- Fundamental in robotics

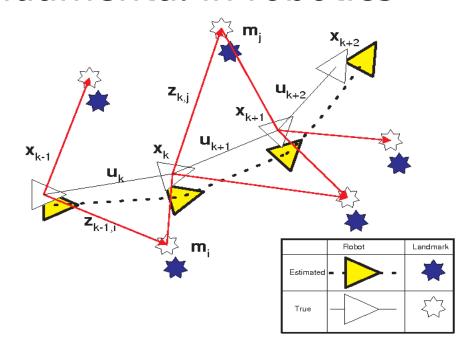
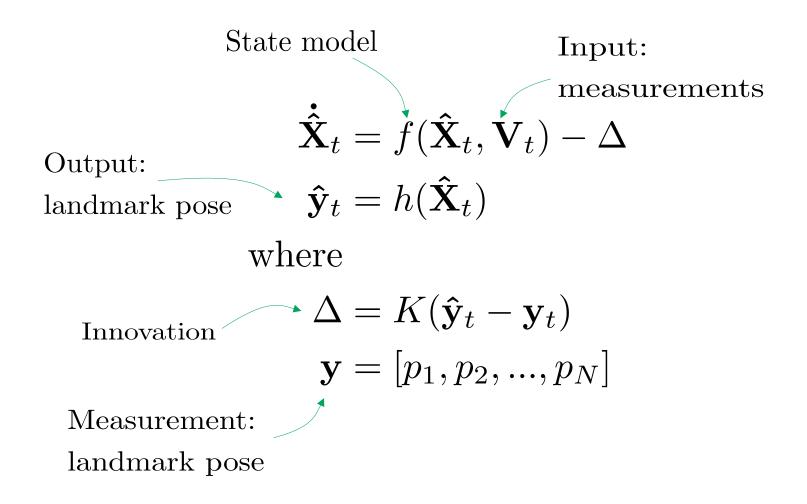


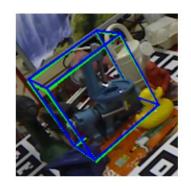
Image from: Durrant-Whyte, Hugh and Tim Bailey. "Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms." (2006).

State Example: Visual Odometry



Offline State Estimation

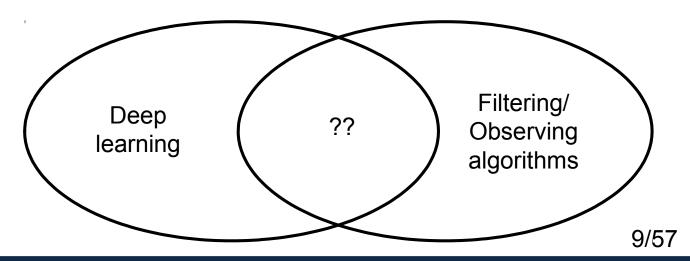
- Estimating output given fixed input data
- Fundamental Computer Vision Problem



Top: K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask r-cnn," 2017. Bottom: M. Rad and V. Lepetit, "Bb8: A scalable, accurate, robust to partial occlusion method for predicting the 3d poses of challenging objects without using depth," 2017.

Problem Motivation

- Offline estimation = learning
- Online estimation = filtering/observing
- How could these be combined and applied to both categories of estimation problem?



Innovation CNN

Innovation: the difference between the current state and the predicted state

Typical Approach

$$\mathbf{\hat{x}}_t = H^{-1}(\mathbf{I}_t)$$

$$\mathbf{\hat{y}}_t = h(\mathbf{\hat{X}}_t)$$
CNN

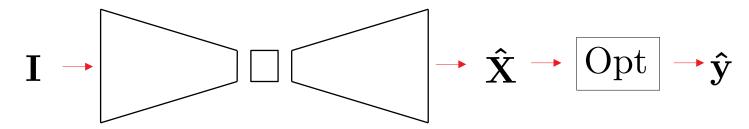
Proposed Approach

$$\mathbf{\hat{X}}_t = f(\mathbf{\hat{X}}_t, \mathbf{V}_t) - \Delta$$

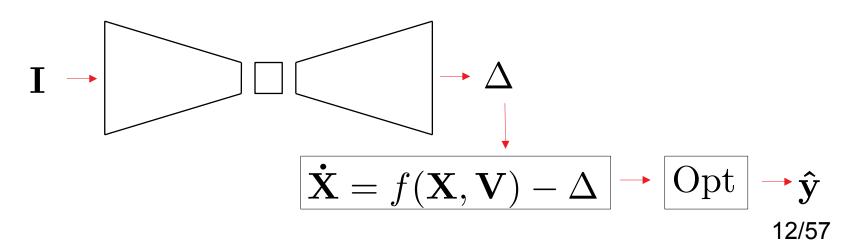
$$\mathbf{\hat{y}}_t = h(\mathbf{\hat{X}})$$
where
$$\Delta = K(\mathbf{\hat{y}}_t - \mathbf{y}_t)$$

CNN

Classical:

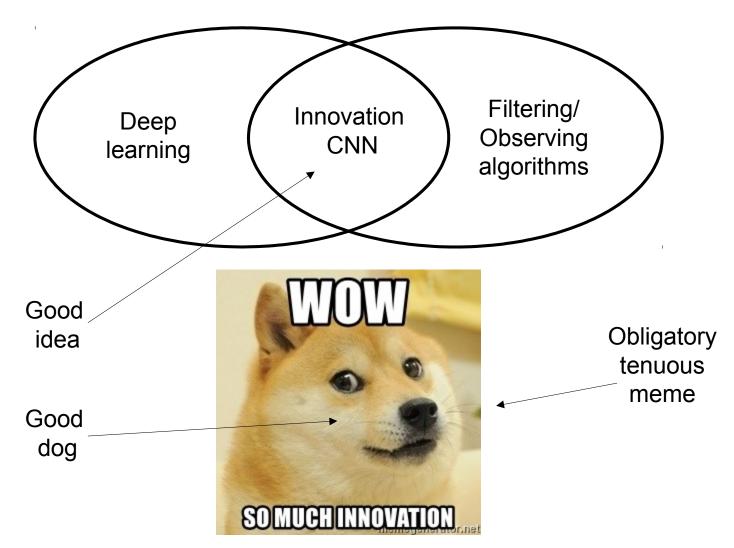


Innovation:



- For online state estimation
 - Problems often `solved' with filtering algorithm (eg. Kalman filter)
 - An Innovation CNN can be implemented to learn the innovation term
 - The measurements are provided by the robot's sensors and the initial state is typically identity

- For offline state estimation
 - An Innovation CNN can be formulated from a CNN for offline state estimation by learning a suitable innovation term
 - The initial state estimate can be taken from the output of the original network
 - The initial estimate can be updated in an iterative framework



Concept Demonstration

- Choose a trial problem: Object pose estimation (Offline)
- Select a pose estimation network
- Learn to estimate an innovation term which we can use to refine the state

Technical Talk

- Initial application: Object pose estimation from a single RGB image
- Offline estimation problem
- Typically implemented with CNN

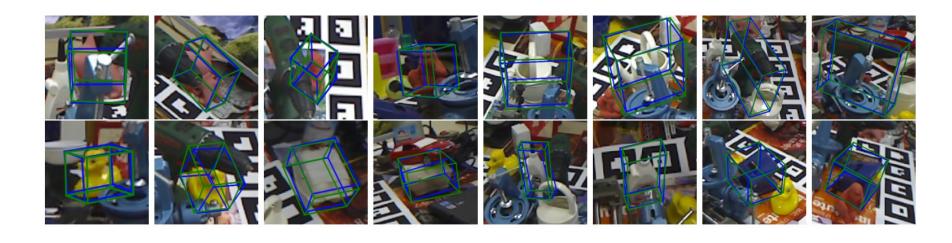


Image from: S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, "Pvnet: Pixel-wise voting network for 6dof pose estimation," in CVPR, 2019

Object Pose Estimation

 6D object pose estimation from a single RGB image

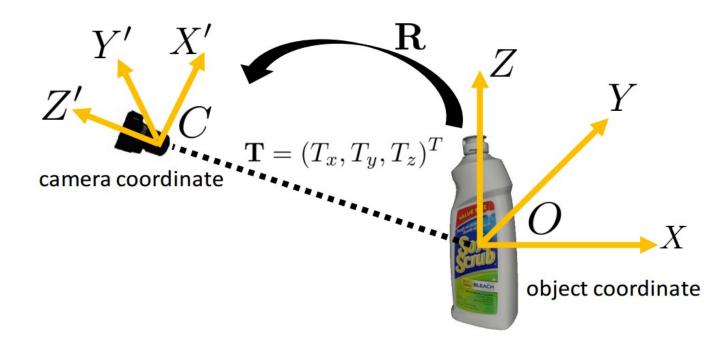


Image from: Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, "Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes," 2017

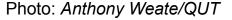
Object Pose Estimation

 Highly challenging due to viewpoint ambiguity and object symmetries

Image from: S. Hinterstoisser, K. Konolige, and N. Navab, "Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes."

Applications

- Robotic manipulation and grasping (Amazon picking challenge)
- Scene understanding
- Virtual and augmented reality



https://phys.org/news/2018-11-augmented-reality.html 20/57

Common Approaches

- End-to-end regression
- Classification via discretised pose space
- Regression to intermediate representation (keypoints) followed by PnP
- Pose refinement

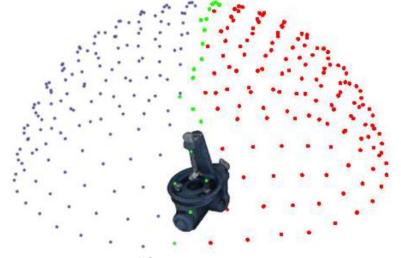
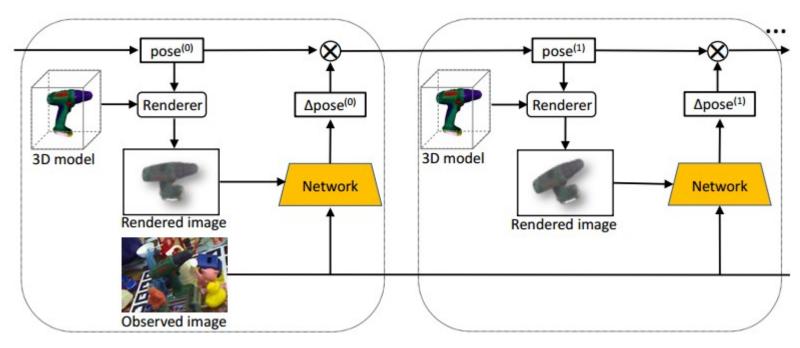


Image from: W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, "Ssd-6d: Making rgb-based 3d detection and 6d pose estimation great again," 2017

Pose Refinement



$$L_{pose}(\mathbf{p}, \mathbf{\hat{p}}) = \frac{1}{n} \sum_{i=1}^{n} ||(\mathbf{R}\mathbf{x}_i + \mathbf{t}) - (\mathbf{\hat{R}}\mathbf{x}_i + \mathbf{t})||_1$$

Image from: Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, "Deepim: Deep iterative matching for 6d pose estimation, "International Journal of Computer Vision, vol. 128, no. 3, p. 657–678, Nov 2019. [Online]. Available: http://dx.doi.org/10.1007/s11263-019-01250-9

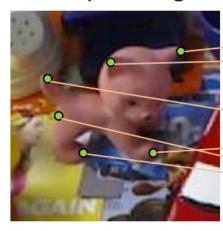
22/57

PVNet

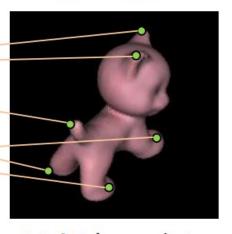
(a) Input image

(b) Vectors

(c) Voting



(d) 2D keypoints



(e) 3D keypoints

(f) Aligned model

Image from: S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, "Pvnet: Pixel-wise voting network for 6dof pose estimation," in CVPR, 2019

Innovation CNN for Pose Estimation

Model:

$$\mathbf{X}_{t+1} = \mathbf{X}_t$$

Then:

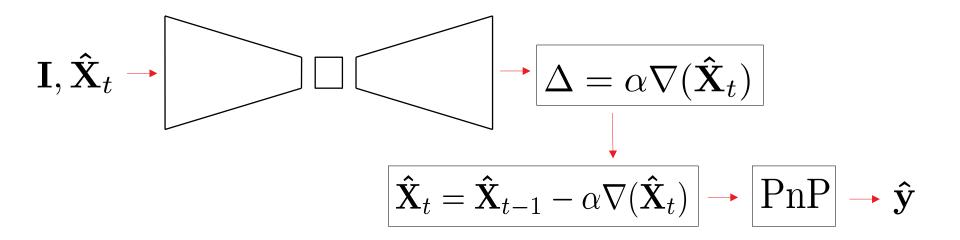
$$\hat{\mathbf{X}}_{t+1} = \hat{\mathbf{X}}_t - \Delta$$

This can be formulated as a S.G.D problem:

let:
$$\Delta = \alpha \nabla(\hat{\mathbf{X}}_t)$$

then:
$$\hat{\mathbf{X}}_{t+1} = \hat{\mathbf{X}}_t - \alpha \nabla (\hat{\mathbf{X}}_t)$$

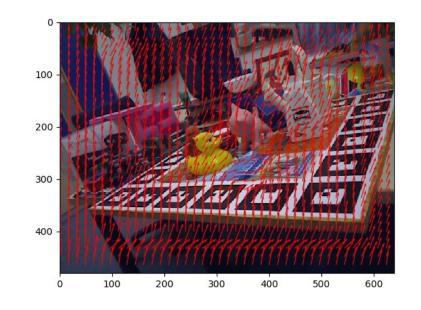
Innovation CNN for Pose Estimation



• State estimate:

$$\hat{oldsymbol{\eta}}_{ij}^k = \hat{oldsymbol{\xi}}^k - \hat{oldsymbol{\xi}}_{ij}$$

$$\mathbf{\hat{X}}_{ij}^k = rac{\mathbf{\hat{\eta}}_{ij}^k}{||\mathbf{\hat{\eta}}_{ij}^k||_2} \in \mathbb{R}^{2 imes\mathcal{K} imesM imesN}$$



where $\hat{\boldsymbol{\xi}}^k$ is the pixel location of keypoint $k \in \mathcal{K}$,

 $\hat{\boldsymbol{\xi}}_{ij}$ is pixel location i, j within an image with dimensions M, N,

 $\hat{\boldsymbol{\eta}}_{ij}^k$ is the unit vector from pixel i, j to keypoint k,

and \hat{X}_{ij}^k is the state estimate.

State gradient:

$$\begin{aligned} \Phi &= \frac{1}{2} ||\mathbf{X}^k - \hat{\mathbf{X}}^k_{ij}||_1^2 \\ &\therefore \nabla_{\hat{\mathbf{X}}^k_{ij}} \Phi = \frac{1}{2} \nabla_{\hat{\mathbf{X}}^k_{ij}} ||\mathbf{X}^k - \hat{\mathbf{X}}^k_{ij}||_1^2 \\ &= -(\mathbf{X}^k - \hat{\mathbf{X}}^k_{ij}) \end{aligned}$$

where \mathbf{X}^k is the ground truth vector field, $\nabla_{\hat{\mathbf{X}}_{ij}^k}$ is the gradient operator,

and $\nabla_{\hat{\mathbf{X}}_{ij}^k} \Phi$ is the state gradient.

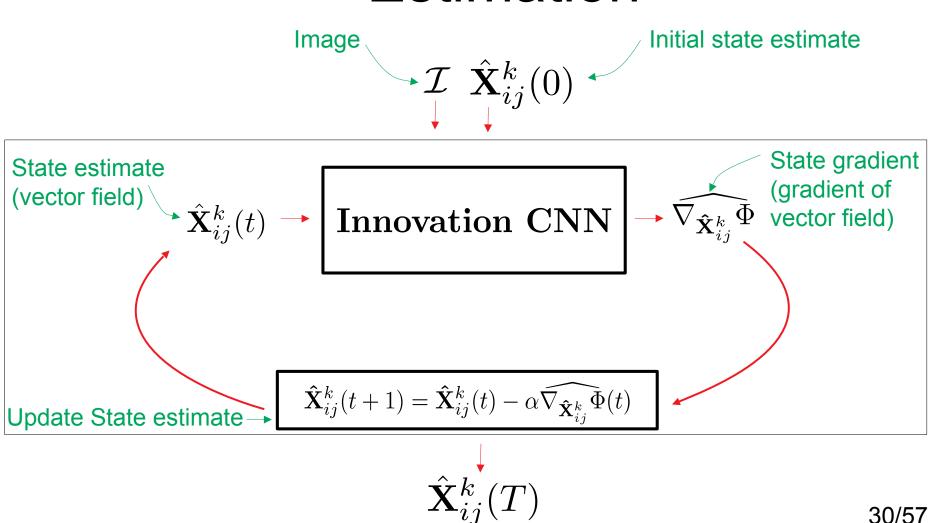
State update:

$$\mathbf{\hat{X}}_{ij}^{k}(t+1) = \mathbf{\hat{X}}_{ij}^{k}(t) - \alpha \widehat{\nabla_{\mathbf{\hat{X}}_{ij}^{k}}} \Phi(t)$$

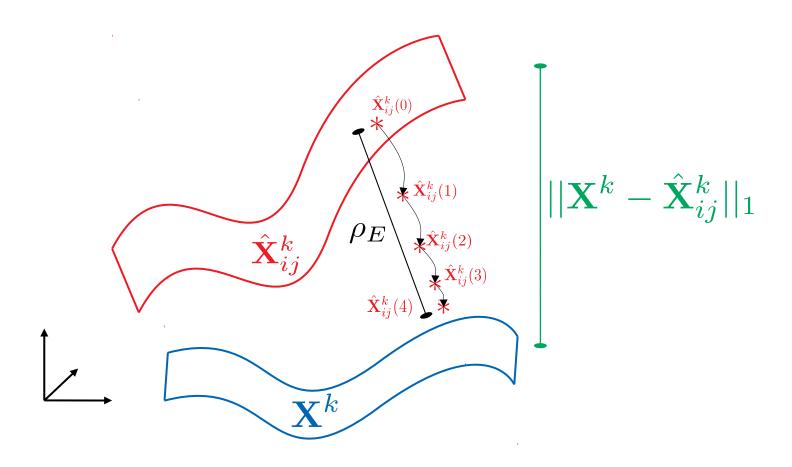
where $\hat{\mathbf{X}}$ is the state estimate, t is the timestep/iteration, $\alpha \in (0,1)$ is the step size, and $\widehat{\nabla_{\hat{\mathbf{X}}_{ij}^k}}\Phi$ is the state gradient.

Note: the step size α is substituted with $\sigma \in (0,1)$ during training, and with $\delta \in (0,1)$ during evaluation. 29/57

Innovation CNN for Pose Estimation



Iterative Refinement



 $\rho_E = T_E \delta$ (the 'interpolation distance')

Innovation CNN for Pose Estimation

Algorithm 1 Iterative Optimisation with Innovation CNN

```
1: Choose 0 < \alpha < 1
```

2: Choose
$$T > 0$$

3:
$$\hat{\boldsymbol{X}}_{ij}^{k}(0) \leftarrow \text{PVNet}$$

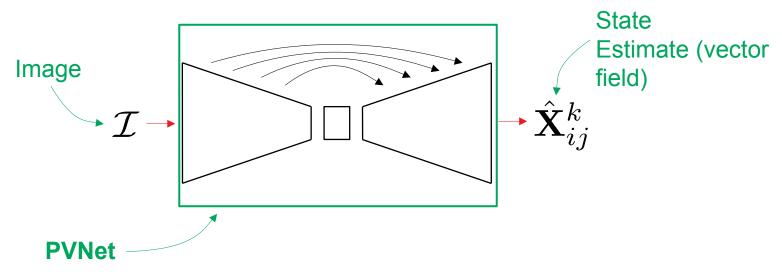
4: **for**
$$t = 1 \rightarrow T$$
 do

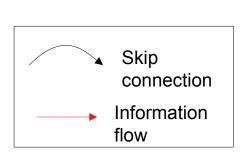
5:
$$\widehat{\nabla_{\Phi}} \leftarrow \text{Innovation CNN}$$

6:
$$\hat{\boldsymbol{X}}_{ij}^{k}(t) = \hat{\boldsymbol{X}}_{ij}^{k}(t-1) + \alpha \widehat{\nabla_{\Phi}}(t)$$

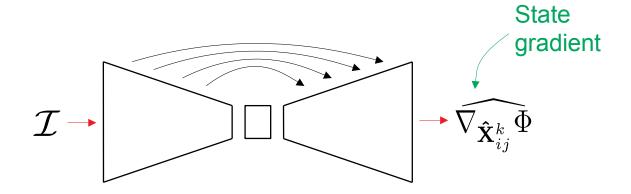
7: pose = PnP(
$$\hat{X}_{ij}^k(T)$$
)

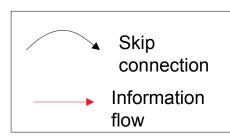
▶ Maximum #iterations





$$\Phi = \sum_{k=1}^{\mathcal{K}} \sum_{(i,j) \in \mathcal{S}} ||oldsymbol{X}^k - \hat{oldsymbol{X}}^k_{ij}||_1^2$$



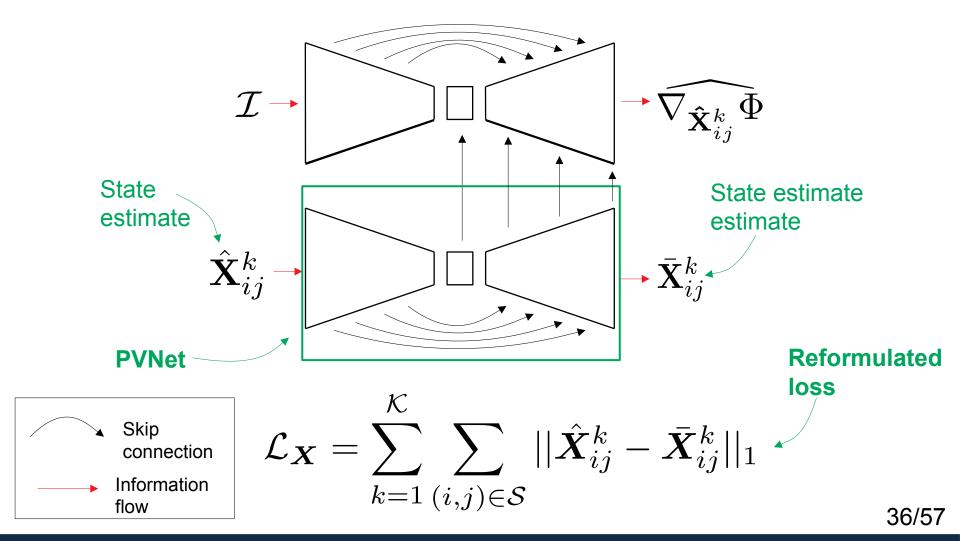




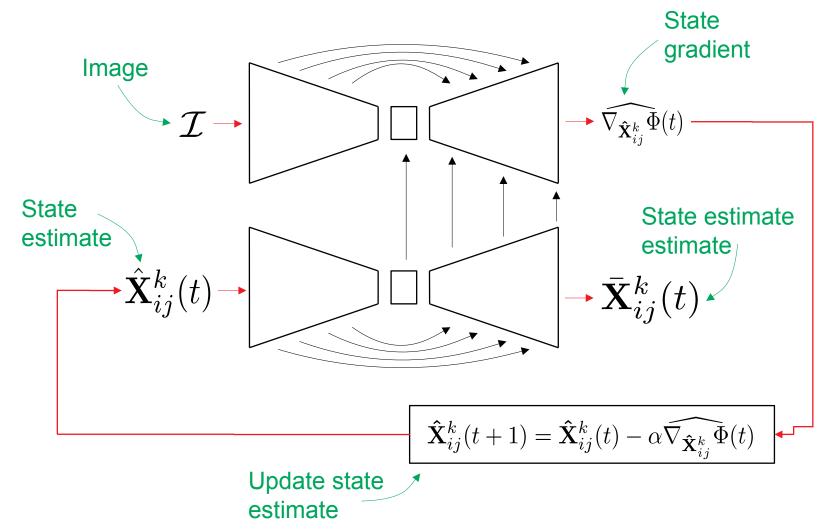
35/57

Reformulated

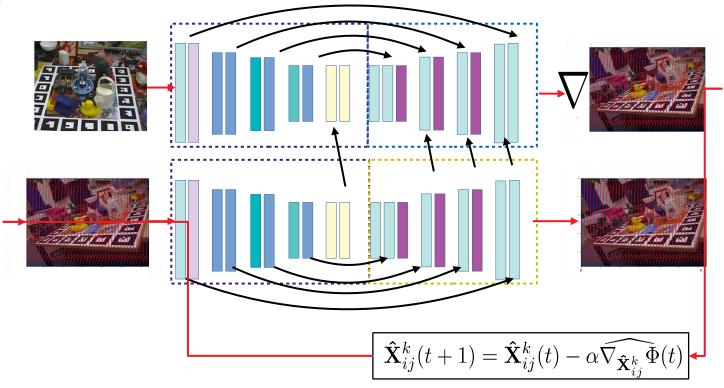
loss

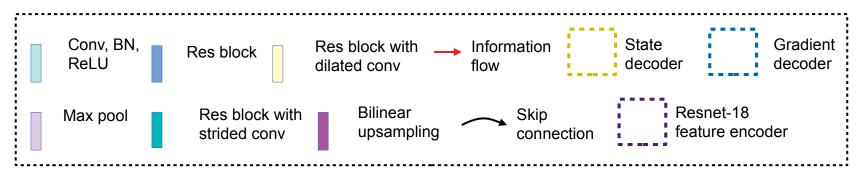


Network Architecture



Network Architecture





38/57

Network Training

$$\mathcal{L}(t) = \mathcal{L}_{(\nabla_{\hat{\mathbf{X}}_{ij}^k} \Phi)}(t) + \gamma \mathcal{L}_{\mathbf{X}}(t)$$

$$\mathcal{L}_{\mathbf{X}}(t) = \sum_{k=1}^{\mathcal{K}} \sum_{(i,j)\in\mathcal{S}} ||\hat{\mathbf{X}}_{ij}^{k}(t) - \bar{\mathbf{X}}_{ij}^{k}(t)||_{1}, \text{ and}$$

$$\mathcal{L}_{(\nabla_{\hat{\mathbf{X}}_{ij}^k}\Phi)}(t) = \sum_{k=1}^{\mathcal{K}} \sum_{(i,j) \in \mathcal{S}} ||\widehat{\nabla_{\hat{\mathbf{X}}_{ij}^k}\Phi}(t) - (\mathbf{X}^k - \hat{\mathbf{X}}_{ij}^k(t))||_1$$

39/57

Evaluation

Evaluation Metrics

Standard metrics:

$$ADD = \frac{1}{m} \sum_{\mathbf{x} \in \mathcal{M}} ||(\mathbf{R}\mathbf{x} + \mathbf{T}) - (\hat{\mathbf{R}}\mathbf{x} + \hat{\mathbf{T}})||_2$$

where \mathcal{M} denotes the set of 3D model points, and m is the number of points.

- The pose is considered correct if the average distance is <10% of the 3D model diameter
- The metric reported is the % of correct poses

Evaluation Metrics

Standard metrics:

2d Proj =
$$\frac{1}{|V|} \sum_{\mathbf{v} \in V} ||\mathbf{P} \mathbf{X}_{ij}^k \mathbf{v} - \mathbf{P} \hat{\mathbf{X}}_{ij}^k \mathbf{v}||_2$$

where V is the set of all object model vertices, and \mathbf{P} is the camera matrix.

- The pose is considered correct if the average error is <5 pixels
- The metric reported is the % of correct poses

Evaluation Metrics

Problem specific metric:

$$Norm(\hat{\mathbf{X}}_{ij}^{k} - \mathbf{X}_{ij}^{k}) = \frac{1}{N} \frac{1}{||\mathcal{S}||} \sum_{n=0}^{N} \sum_{(i,j)\in\mathcal{S}} ||\hat{\mathbf{X}}_{ij,n}^{k} - \mathbf{X}_{ij,n}^{k}||_{2}^{2}$$

where N is the number of samples, and S is the segmentation mask.

Design Choices

Choosing Parameters

Baseline PVNet: 47.2% (ADD)

σ	$ ho_T$	δ	$ ho_E$	mean(ADD)	mean(% increase ADD)	mean(% decrease norm(X-X^))	mean(ADD) T/P values
1	1	1	2	0.424 +/- 0.04	-9.81 +/- 8.47	9.29 +/- 1.37	-2.12/0.05
1	2	1	4	0.520 + / - 0.03	10.33 + / - 6.70	6.75 +/- 1.33	3.76/0.001
0.9	1.8	0.9	3.6	0.518 + / - 0.03	9.48 +/- 7.17	7.56 +/- 1.02	3.61/0.001
0.6	1.2	0.6	2.4	0.539 +/- 0.03	14.50 +/- 6.56	17.99 +/- 0.89	5.26/0.001
0.6	2.4	0.6	4.8	0.464 +/- 0.01	-1.83 +/- 3.66	2.11 +/- 0.34	-5.16/0.001
0.3	1.2	0.3	2.4	0.471 +/- 0.01	0.44 +/- 2.79	1.91 +/- 0.34	-0.65/0.2+

Table 3.1: Study of Iteration Parameters. All mean and standard deviation values were computed from the last 20 epochs of training, from a total of 50 epochs.

$$\rho_T = \sigma T_T$$

$$\rho_E = \delta T_E$$

45/57

Choosing Parameters

GE/+SA	$ abla_{\Phi}/\widehat{ abla_{\Phi}}$	$L_{ abla_{\Phi}}$	initial est	mean(ADD)	mean(% increase ADD)	mean(% decrease norm(X-X^))	mean(ADD) T/P values	GE/+SA	$ abla_{\Phi}/\widehat{ abla_{\Phi}}$	$L_{\nabla_{\Phi}}$	initial est
GE+SA	$ abla_{\Phi}$	scaled	PVNet	0.511 +/- 0.036	8.29 +/- 7.82	12.91 +/- 2.55	2.13/0.05				
GE+SA	$\widehat{\nabla_{\Phi}}$	scaled	PVNet	0.508 +/- 0.043	7.51 +/- 9.12	12.50 +/- 3.25	1.38/0.2				
GE+SA	$\widehat{\nabla_\Phi}$	unscaled	PVNet	0.470 +/- 0.066	-0.16 +/- 13.67	13.60 +/- 2.55	0.01/0.5+				
GE	$ abla_{\Phi}$	unscaled	PVNet	0.506 +/- 0.034	7.40 +/- 8.06	14.78 +/- 1.07	2.08/0.05				
GE+SA	$ abla_{\Phi}$	unscaled	PVNet	0.539 +/- 0.030	14.50 +/- 6.56	17.99 +/- 0.89	4.79/0.001				
GE+SA	$ abla_{\Phi}$	unscaled	GT +/- 10%	0.460 +/- 0.008	-2.81 +/- 2.61	2.04 +/- 0.20	-10.85/0.001				
GE+SA	$ abla_{\Phi}$	unscaled	GT +/- 1%	0.460 +/- 0.007	-2.74 +/- 2.07	1.84 +/- 0.11	-13.83/0.001				

Table 3.2: Training Parameters. Experiments are colour-coded based on which design choices are being compared. The results of the experiment that performed best for a given pair of design choices is highlighted with the corresponding colour. T-value is obtained from Welch's T-test of the mean(ADD) compared to the original PVNet distribution: 0.472+/-0.0067. P-value is obtained from corresponding probability that the two means come from separate distributions.

Choosing Parameters

Loss	$\sigma, \rho_T, \delta, \rho_E$	mean(ADD)	mean(% increase ADD)	mean(% decrease norm(X-X^))	mean(ADD) T/P values
IRR	1,2,1,4	0.401 +/- 0.04	-15.04 +/- 8.51	4.79 +/- 1.14	3.14/0.01
	1,4,1,4	0.457 +/- 0.03	-3.12 +/- 6.83	1.41 +/- 1.01	
Innovation CNN	1,2,1,4	0.520 +/- 0.03	10.33 +/- 6.70	6.75 +/- 1.33	3.76/0.001
	1,4,1,4	0.406 +/- 0.03	-13.95 +/- 7.72	3.21 +/- 1.46	

Tat : IRR: Backprop after all iterations. Innovation CNN: Backprop each iteration. Both experiments use: $\sigma = 1$, $\rho_T = 2$, $\delta = 1$, $\rho_E = 4$. T-value is obtained from Welch's T-test of the mean(ADD) compared to the original PVNet distribution: 0.472+/-0.0067. P-value is obtained from corresponding probability that the two means come from separate distributions.

Initial Results

Experiments

- All experiments were undertaken on the Linemod dataset [1]
- Qualitative results are shown for Linemod's `Ape' object

[1]

[1] S. Hinterstoisser, K. Konolige, and N. Navab, "Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes."

Qualitative Results

Network trained with:

$$\sigma = 0.3$$

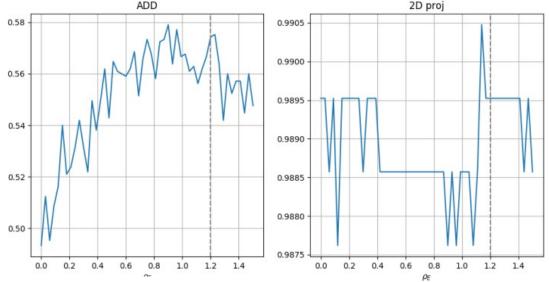
$$T_T = 4$$

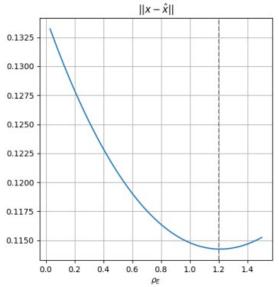
$$\rho_T = T_T \sigma = 1.2$$

$$\delta = 0.03$$

$$T_E = 50$$

$$\rho_E = T_E \delta = 1.5$$





Quantitative Results

- Initial PVNet estimate: 47.2% (ADD metric)
- After iterative refinement: 59.8%
- Performance increase: ~27% (ADD)
- Decrease of ~18% ($Norm(\hat{\mathbf{X}}_{ij}^k \mathbf{X}_{ij}^k)$)

Conclusions

- We reformulated PVNet to an Innovation CNN for object pose estimation
- Obtained an increase in performance of ~27% on the Ape dataset, using the ADD metric

Next Steps

- Train and evaluate on remaining object categories of Linemod dataset
- Hope we get a similar performance increase

TPR: Future Work Proposal

Pose Estimation

- Test on remaining Linemod objects ASAP
- Also test on other standard datasets for object pose estimation (Linemod Occlusion and YCP)
- Incorporate into a more sophisticated pose estimation pipeline

Depth Estimation

 Try the same idea on depth estimation from an RGB image

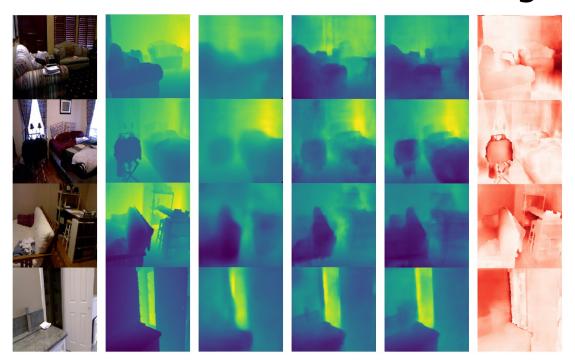


Image from: D. Wofk, F. Ma, T.-J. Yang, S. Karaman, and V. Sze, "Fastdepth: Fast monocular depth estimation on embedded systems," 2019.

Online Estimation

- In our example offline problem the system state is modeled as being stationary. But we **could** have any system.
- Eg. visual odometry observer

